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A generalization of an asymptotic method, which has been developed earlier [l, 21 as applied to elastic 

materials, to the case of viscoelastic anisotropic media is proposed. The problem of the transmission of a 

load to viswelastic orthotropic bodies by elastic elements, which is associated with the adhesive strength of 

composite fibre materials, is investigated. 

1. CONSIDER a viscoelastic body consisting of a material which is orthotropic both with respect to its elastic and 
its viscoelastic properties. The principal directions of anisotropy coincide with the Cartesian axes of the x, y, 
and z coordinates. In this case, the relationships between the strains and the stresses can be written in the 
following manner: 

i - 1,2,3 
0 

t 

K, (t - r) “,J dr) 

(i = 2. j = 3, n = 1; i = 1, j = 3, n = 2; 1 = 1, j = 2, n = 3) 
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In order to obtain e2s and e33, it is necessary to carry out a cyclic permutation of the indices in ell, Here 

v&r = vntB,, vnrB, = v,,% v&, = v,& 

KM = K,,, K,, = KC,*, K,, = K,, 

Here E are the instantaneous elastic moduh, vu are Poisson’s ratios, G, are the shear moduh, VU are the 
normal stresses, o12 = crzl, 01~ = (Tag, U23 = a,2 are the shear stresses, and KU (t - T) is the creep kernel, for 
which we use the following analytical expressions [3]: 

K,, (t - z) = k,, (t - T) a”-1 exp I”-&, (t - z)] (1.2) 

K, (t - T) = kg ft - $‘-’ erp I-fir (t - x)1 (0 < a13, al < i) 

The components of the strain tensor are expressed in terms of projections of the dispIacements according to 
the formulas 

ell = uXt esa = vYt ea8 = waF s, = v, + wy 

q, = uz + w,, q, = uy -I- vx 

(1.3) 

The indices x, y and z denote differentiation with respect to the corres~nding coordinates. 
By applying a Laplace transformation with respect to time and with a parameter to relationships (1.1) and 

taking account of (1.3), we arrive at the integration of a system of equations in the transform of the components 
of the displacement vector: 

(1.4) 

q 
EIPn (PI G# 

= E&I(P) ’ 
Ih (PI 

e = e1 FU (p) ’ el=-, II= 
GUFI (p) 

El GuFs (~1 
1, = GSA (P)&sF~ (~1, m = i + CI, ml = 1 + pi, c = vlx8-% (PI 

Irl = %A (p)(el*)-‘, I% = vdk (PM-~. lia = vd, (P& (&rl 

IL4 = %XFM (p)ql (M -1 . p’s = T+~%, (p)q 

with the corresponding boundary conditions. 
Here, 

Fu (P) = 14 -I- 41 (~fl-~, Pti fp) = [i i- ‘;j (p)lFII (p) (i + if 

‘, (PI = 1% + fi (PII-‘, fti (p) = k&if (al,)(p + fiit)-OLil 

f, (P) = k,r (ai)(P + Bi)-cL‘ (6 j = i, 2, 3) 

Equations (1.4) are analogous to the equilibrium equations in the displacements of an elastic orthotropic 
body. The ~ymptotic method in ]2] can therefore also be used here if the quantity E is used as the small 
parameter. In fact, it turns out to be smafl since the parameter Ed is small in the case of real orthotropic 
materials and the functions F3(p)/F1, (p) for the kernels (1.2) do not exceed unity for arbitrary values of the 
parameter p, Here, as in [2], the stress-strain state of a visco-elastic orthotropic body can be successfully split 
into three components, the determination of each of which reduces to the successive solution of problems in 
potential theory. This enables us to investigate many problems of the mechanics of a deformed solid which 
cannot be successfully solved using other methods. 

2. We wih now consider some problems associated with the determination of the adhesive strength of a fibre 
composite. 

Let an elastic semi-infinite rod with a rectangular cross-section of area Fc (the thickness of the rod is h, the 
half-width is b and it is assumed that h/M 1) be placed in a viscoelastic orthotropic semi-infinite body and be 
continuously bound to it. The centre line of the insert is perpendicular to the bounding half-space of the plane 
and coincides with the x axis. We need to determine the law governing the dist~bution of the contact stresses 
between the rod and the half-space when a concentrated force PO acts at the end point of the rod. This force is 
directed along the axis of the rod, it is applied at the initial instant of time and subsequently remains constant. 

In spatial problems for bodies with elastic inserts of small transverse cross-section, the model of a 
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one-dimensional elastic continuum for the insert in combination with a model of contact along a line is not 
directly applicable 141. As in [2, 41, we shall assume that a model of a one-dimensional elastic insert in 
conjunction with a model of contact over an area for the half-space holds, when the distribution of the contact 
stresses is given by the formula 

%(x,z)= T (x)l(n v/v - 28 

where T(X) is the stress per unit length of the insert and is to be determined. 
In this formulation after the application of a Laplace transformation (the transforms are denoted by 

asterisks), we arrive at the integration of an equation in the transform of the displacements Ui of the points of 
the centre line of the rod 

U ux = IP& WP - r* W(E,F,) 

and the equilibrium equations for the haIf-space (q = ql, I1 = 12 = 1) 

WW,, + u,, + u= = 0 (w’ =3 a-‘) 

with the following boundary conditions: 

U,=Owhenx=O 

Uu = z* (x)l(2nGF, (p) I/b* - es) when y= 

u = u, rrprr y = 0, 2 ==I 0 

All the functions vanish at infinity. 

0, lzl<b (2.3) 

Here E, is the m~ulus of elasticity of the insert material and 6(x) is the Dirac b-function. The shear stress 
o12*(x, z) is solely deter~ned by the function U, since V = 0 (Vx = 0) when y = 0 and ui2* = 2GFi (p)Ur , 
where G = Gi2. 

The solution of problem (2.1)-(2.3) can be obtained using Fourier transformations. On carrying out these 
transformations and finding their inverses, we get 

00 

N*(x)= -=& s 
0 

2Pocp(P) O” T[p S 
0 

(2.4) 

5 = s9M (6) + g, (PI> cp (P) = gt,F, (P) 

[PO = %AG/(E,F,), M (0) = I,, (@K, (6), 8 = bcus/2 

where I,,(9) and Kc,(e) are modified Bessel functions and N*(x) is the Laplace transformation of the stress in 
the rod. 

The inverse Laplace transformation determines the stress N and T as a function of the coordinates and time. 
In order to change to the inverse transforms, we represent the stresses (2.4) in the form of series in a small 
parameter F * which depends on p: 

T* (x, p) = ITo (x) + ‘I’, Me* + Ts (~)a*# f . . . I/p 

where we mean by T* either the stress N* or r*. 
If the material of the half-space possesses largely shear creep (k& = 0, kr = k) and cx = 1, then 

o = w,, Ifp -t- B -I- WP + 8H’ ‘, cp = ‘PO (P + S)/(P + B + kf 

o. = (E~~G)‘lz, PO = bo,s/2 

(2.5) 

In this case, E* = 

* 
W(p+ 6) in series (2.5) for large values of the parameter p while e* = Jlp(p+ p), 

= -W(p + k). On passing to the inverse transform in (2.Q for small values of the time we get 

T (x, t) = TO b4 + TV0 Wtk/BN~ - e -fit) + . 1 . (2.6) 

where, for the stress in the rod N(x, t): 

2Po f 
To(x) = 51 s 

SM (60) -da 
n 
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2poqo OD 
TIO (I) = 7 s s[&(s)--.(0o)]yds 

0 

A 0 = s’M (00) + cPa 

and for the contact stress 7(x, t): 

2poqo = 
To(x) = yy- s y ds 

0 

@[Ml (8) - M (eo)] =ds Aa 

(2.7) 

(2.8) 

Ml (8) = @0/4)k @o)Ko (eo) - IO @o)& (eo)f 

For large values of the time, we obtain from (2.5) 

T 6, t) = T, (xl + Tim (x)ge-B* + . . (2.9) 

The coefficients T,(x) and T,,(x) are found using the same formulas (2.7) and (2.8) after replacing wa by o, 
and cps by (pm, where 

%a = 00 (I+ k/B)“‘, ‘P, = cpo/(l + k/B) 

The stresses (2.6) can be represented by asymptotic expressions at small and large values of the coordinate x 
in the same way as in the elastic problem in [2]. For small values of x (which corresponds to a large value of the 
parameter s), we conclude by using the formulas 

that passing to the inverse transforms leads, for small time values, to expansion (2.6), the coefficients of which 
have the form: 

for the stresses in the rod: 

TO (x) = 2P. (ci x1 sin x1 - COB x1 si x,)/n 

T,, (x) = -2Pox1 (COB x1 ci x1 + sin x, si x,)/n 

x1 = go”, go = boocpo 

(2.10) 

and for the contact interaction stress: 

T, (x) = -2P,g, (co9 x1 ci x1 + sin x1 si x,)/n 

TIC (x) = P,g, [(COB x1 ci x1 + sin xl si x,) - x1 (sin x1 ci xl - CO9 X1 si x1 - ilxr)lln (2.11) 

For large values of the time we have the expansions (2.9), the coefficients of which are found using formulas 
(2.10) and (2.11) after replacing gc by g, = bw, (P_. The nature of the decrease in the stresses at large values of 
the coordinate x is analogous to the elastic problem in [2]. 

A two-point PadC approximation [5] can be used in order to obtain the inverse transforms of the required 
functions at arbitrary time values. The process of constructing such an approximation has been described in [6]. 
In fact, this function enables one to find some characteristics for arbitrary time values, if their behaviour is 
known for small and large values. The latter, as is shown above, can be determined quite simply. 

3. Let thin elastic inserts occupy each of the bands 06x< m, ) z 1 G b, y = 2ak (k = 0, 21, . . .) in the 
half-space (there is periodic&y with respect to the y coordinate). Under the same assumptions as in Sec. 2, the 
transform of the contact stress is given by the formula 

2Pocp 9 
r+(x)=,p 

s 
cos X8 

cp + S’L (8) ds 
0 

(3.1) 

L (8) = 
s 

ctlr Q 
Jotbv)~ dv, s-2 = ~‘o’sa v* 

0 
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When a+ Q) (2a is the distance between the inserts), Eq. (3.1) reduces to the so!::tion for a single insert [the 
third formula of (2.4)]. The passage to the inverse transforms is accomplished using the method indicated 
above. 

If, in a periodic problem, the rods are loaded through one, the inverse transforms of the contact stress 
TO* (q*) in the band connecting the loaded (unloaded) insert with the half-space are written thus: 

Mt (s) = 
= JoJo(b$ 
s 

7 [th (an) + cth (aQ)] dv, 
OD Jo(bv)dv 

Al=’ S Qsh(2aQ) 
0 0 

(3.2) 

As = ZMs (4 + 2q 

In this case, the passage to the limit as a--* m also yields the solution for a single insert. ‘Ihe contact stresses 
whent=Oandt= CO using the same formulas (3.2) after replacing q by ~0, w by w,,, (p by (pm and o by o_,, 
respectively, while p = 1 also. 

It should be noted that the solutions which have been obtained for the contact interaction stresses have a 
logarithmic singularity at x = 0. Actually, the exact nature of the singularity in the neighbourhood of &is point 
has the form 

T (x) = AX-~ (3.3) 

where A is known (O<h < 1) but the coefficient A is unknown. It can be found from the matching conditions: at 
a certain point of the contact region, both the approximate solutions obtained above and the particular solution 
(3.3) as well as their derivatives must be identical. These conditions enable one to find the zones in which the 
particular solutions (3.3) and the solution found by the method proposed above hold. 
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